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Background

At present
• Manufacturing 

encompasses 12% 
of US economy1

• Traditional assembly 
lines are either 
manual or completely 
automated

HRC allows for
• Improved team 

fluency with 
complementary skill 
set2

• New possible 
interaction modes 
and collaboration

Challenges
• Improved teaming 

requires human 
factors 
considerations such 
as trust and fatigue

• Operator safety is 
critical as robots are 
not 100% reliable2
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Background

Level of Human Robot Collaboration

Strictly separated robot workspace Part of the workspace is shared Workspaces are full shared

Images adapted from Rizal et al. 2019
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Trust and Fatigue

Trust Fatigue Trust × Fatigue

”the attitude that an agent will 
help achieve an individual’s 
goals in a situation characterized 
by uncertainty and vulnerability”3

– Lee and See

Why?
Robots and other autonomy 
agents cannot be 100% reliable3. 
Unreliable behaviors cause 
distrust leading to lower efficiency 
and worker satisfaction.

Why?
Workers in industrial settings are 
subject to extended and erratic 
work hours leading to fatigue. 
Cognitive fatigue can impact 
attention, vigilance, and situation 
awareness4.

Cognitive fatigue is defined as a 
decrease in cognitive resources 
developing over time on sustained 
cognitive demands.

Brain regions affected by 
fatigue5 has been observed 
to be affected by trust6. 
However, this interplay is 
yet to be investigated in 
HRC. 

Why?
Industrial workers collaborating 
with robot are often exposed to 
the unreliable robot behavior 
under fatigue conditions.
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Objective and Hypothesis
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Understand the effect of robot 
reliability and fatigue manipulation 
on subjective measures

Understand the impact of reliability 
and fatigue manipulation on the 
human performance

Understand the impact of the 
reliability and fatigue manipulation 
on brain activation and connectivity

It is expected to observe higher 
trust in reliable condition and 
higher fatigue in fatigue condition

Humans perform better in reliable 
and no-fatigue conditions. 

Higher activation and increase in 
connectivity is expected in 
unreliable conditions. Activation 
may decrease under fatigue 
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A closer look

• S-shaped metal surface 
polishing task where 
lateral trajectories are 
polished by participant 
and curved paths by the 
robot.

• Indicator lights on the 
end-effector inform 
control takeover

• 3-axis end effector 
control using joystick

• Sixteen participants 
aged 25.12 ± 3.31 years 
(IRB2020-0097DCR)
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Manipulating trust and fatigue

Trust manipulation: 76% reliability10,11

• Reduction in speed for 2.5 cm;

• Loss of contact of end-effector with 
surface

• Late/early start of automatic control 
(2.5cm)

• Automatic control complete half turn

• Automatic control performs straight turn

• Joystick command stops suddenly for 2 
seconds.

Image source: Hopko et al. 2021

Fatigue manipulation: 2-back task for 1h
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Measurements

Placement of the optodes and regions of interests
46 channels, 11 regions
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• Subjective
• Trust7
• Fatigue: 1-point fatigue question (“What is 

your level of fatigue?”)
• NASA TLX8

• Objective
• Performance

• Speed
• Accuracy
• Precision

• Brain
• Peak activation
• Effective connectivity9: causal relation between 

brain regions
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Brain data processing

Light Intensities of 46 
channels

Raw Data

Figure adapted from: Hopko, S. K., & Mehta, R. K. (2022)

Downtime Removed 
Between Trials

Concatenation & 
Detrending Within 

A Condition

Channels averaged 
into 3 regions

Channels Segmented 
Into Each Trial

10-Trials Within A 
Condition Averaged

Peak with 2 Second 
Interval Extracted and 

baseline correctedSignal Processing

Peak 
activation

Effective 
connectivity 

using 
MVGC13

toolbox
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Results: brain activations and connectivity 

Brain-activations across different conditions Effective connectivity between brain regions

• LBA, LDLPFC, MDLPFC, and RBA exhibited higher activation in 
unreliable conditions than reliable conditions.

• Fatigue led to lower activation in MDLPFC
• Fatigue × reliability interaction in M1 region

• Increase in number of connections in unreliable conditions
• Increase in connections from no-fatigue to fatigue under 

reliable conditions however opposite trend is observed in 
unreliable conditions
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Results: Subjective responses

All other p’s<0.005

Perceived fatigue

Trend: reliability × sex (p=0.071)

Workload

Trend: fatigue × reliability × sex 
(p=0.076)

Trust
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Results: Performance

Speed Accuracy Precision

All p’s<0.001
Graphic Source: https://www.praecis.com/blog/category/Science

11



#HFES2022

Discussion

• Robot reliability and 2-back task successfully manipulated trust and cognitive fatigue as evident by 
the subjective measures.
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• Increased activation suggest that increased task difficulty and mental effort causes an increase in 
oxygenated hemoglobin level in the PFC14

• Lower MDLPFC activation in fatigue is linked to decline in working memory15

• Increased complexity of causal connections suggest participants had to anticipate robot behavior 
during unreliability

• Effective connectivity showed different brain responses to fatigue and robot reliability manipulation 
in males and females.

• Reliability and cognitive fatigue alone and their interplay both affect the human brain and 
performance
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Limitations

• Carefully controlled research setting may not represent or 
generalize real-world situations. 

• Participants from engineering population not representative of 
the educational level or experience level of an industrial 
worker.

• Future studies should include a larger and more relevant 
sample size.
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